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Supplementary Information 
 

Model-based Method 

A Bayesian geostatistical model of the proportion of individuals with any marker (>440 amino acids 
into the protein) was developed.  The number of individuals in each study with a resistance 

mutation ( ) was assumed to be binomially distributed, given the number of individuals in the 

study ( ) and the probability : 

. 

The probability, , at an arbitrary location , was modelled as the inverse logit transformation 

of the sum of a random field, , and an unstructured random component, : 

.  

The unstructured components, , were assumed to be independent and identically distributed 

with zero mean and variance while the random field, , was modelled as a stationary 

Gaussian process, with constant mean function  and Matern covariance function,  

 

where is the mean parameter, is the spatial scale parameter, is the partial sill and is the 

degree of differentiability parameter. The covariance between a study conducted at location and 

a study performed at was given by 

 

where is the great circle distance,  is the gamma function and is the modified 

Bessel function of the second kind of order .The following priors were imposed: 

 

Using the Python module PyMC, the model was fitted with Markov chain Monte Carlo (MCMC) 
[1,2]. Predictive maps were generated on a 5 x 5 km grid from the MCMC samples. For each 
prediction location, prevalences were drawn and the distribution summarized with the median and 
standard deviation of this set.  

 

1. Patil A, Huard D, Fonnesbeck C (2010) PyMC: Bayesian Stochastic Modelling in Python. 
Journal of Statistical Software 35: 1-81. 

2.  Patil A (2010) PyMC Gaussian process module Users guide. 
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Kriging Method 

Let z(xk),  k =1, 2 … n  be the observed values of the variable z at locations  x1, x2,… xn 

 

We require to find coefficients λk for k = 1,2, … n,  such that the estimate ẑ0 of z0 (=z(x0)) at any 
point x0  

�̂�0 = ∑ 𝜆𝑘𝑧(𝑥𝑘)

𝑛

𝑘=1

                                                                                                  (1) 

 

minimize the mean squared prediction error (referred to as ‘the kriging variance’) 

 

𝜎𝑒
2 = 𝐸[( 𝑧0−�̂�0)

2]                                                                                                (2) 

         

subject to the constraint (to ensure unbiased) 

1 = ∑ 𝜆𝑘

𝑛

𝑘=1

                                                                                                           (3) 

 
2.1 Kriging coefficients wk. 

Denoting z0 as a random variable and recalling that in ordinary kriging E[z0] =  μ where μ is an 
unknown but constant mean , we first note that 

 

    𝜎𝑒
2 = 𝐸[( 𝑧0−�̂�0)

2] =  𝑉𝑎𝑟 (𝑧0−�̂�0) + 𝐸[(𝑧0−�̂�0)]
2                                                                                       

 

and because by unbiasedness  𝐸[(𝑧0−�̂�0)]
2 = 0,  

 

                            =  𝑉𝑎𝑟(𝑧0) + 𝑉𝑎𝑟 (�̂�0)
− 2𝐶𝑜𝑣(�̂�0, 𝑧0)                                                                                                              (4) 

 

Using the method of Lagrange multipliers we therefore require to minimize the Lagrangian  

𝐿      =  𝑉𝑎𝑟 (𝑧0−�̂�0)

+ 2𝛽 (∑ 𝜆𝑘

𝑛

𝑘=1

− 1)                                                                                                                               

= 𝜎2 + ∑ ∑𝜆𝑘

𝑛

𝑗=1

𝑛

𝑘=1

𝜆𝑗𝐶𝑜𝑣 (𝑧(𝑥𝑘), 𝑧(𝑥𝑗)) −  2 (∑ 𝜆𝑘𝐶𝑜𝑣(𝑧(𝑥𝑘)

𝑛

𝑘=1

, 𝑧0))

+ 2𝛽 (∑ 𝜆𝑘

𝑛

𝑘=1

− 1)                    (5)       

 

 

where  𝜎2 is the variance of z0 and Cov(x,y) is the covariance of x and y. This is achieved by taking 
partial derivatives of L with respect to λk for k= 1, 2, … n  and the β and then setting each to zero,  
which yields a homogeneous system of n simultaneous equations which can be written in matrix 
form as 

 



[
 
 
 
𝐶𝑜𝑣(𝑧(𝑥1), 𝑧(𝑥1)) … 𝐶𝑜𝑣(𝑧(𝑥1), 𝑧(𝑥𝑛)) 1

⋮ ⋱ ⋮ ⋮
𝐶𝑜𝑣(𝑧(𝑥𝑛), 𝑧(𝑥1)) … 𝐶𝑜𝑣(𝑧(𝑥𝑛), 𝑧(𝑥𝑛)) 1

1 … 1 0

 

]
 
 
 
[

𝜆1

⋮
𝜆𝑛

𝛽

]

= [

𝐶𝑜𝑣(𝑧(𝑥1), 𝑧0)
⋮

𝐶𝑜𝑣(𝑧(𝑥𝑛), 𝑧0)
1

]                                    (5) 

 

or more compactly as 

𝑪𝝀 = 𝑫                                                                                                        (6) 

 

 

The kriging coefficients λk  and the Lagrange multiplier β are then found by multiplying the right 
hand side vector in equation (8) by the inverse matrix C-1

 

𝝀 = 𝑪−1𝑫                                                                                                              

 

2.1 Kriging coefficients λk in terms of the variogram 

The variogram can be written in terms of the covariance function as  

 

𝛾𝑖𝑗 =
1

2
𝑉𝑎𝑟 (𝑧(𝑥𝑖) − 𝑧(𝑥𝑗))  

= 1/2( 𝜎2 + 𝜎2 − 2𝐶𝑜𝑣(𝑧(𝑥𝑖) − 𝑧(𝑥𝑗) )                                                                   

    = 𝜎2 − 𝐶𝑜𝑣(𝑧(𝑥𝑖) − 𝑧(𝑥𝑗) )                                                                                                                         

So we have that 

                           𝐶𝑜𝑣(𝑧(𝑥𝑖) − 𝑧(𝑥𝑗) )

= 𝜎2 − 𝛾𝑖𝑗                                                                                                                 

                                                                              

and the kriging equations (5) can be rewritten equivalently in terms of the variogram as 

 

 

       [

−𝛾11 … −𝛾1𝑛 1
⋮ ⋱ ⋮ ⋮

−𝛾𝑛1 … −𝛾𝑛𝑛 1
1 … 1 0

 ] [

𝜆1

⋮
𝜆𝑛

𝛽

] =

[

−𝛾10

⋮
−𝛾𝑛0

1

]                                                                                        (7)  

 

or more compactly  

 

𝜞𝝀 = 𝜞0                                                                                                     (8) 

 

Kriging coefficients λk and the Lagrange multiplier β are found multiplying the right hand side by the 

inverse matrix 𝜞−𝟏
 

𝝀 = 𝜞−1𝜞𝟎                                                                                                             

 

 



2.3 Kriging variance 𝜎𝑒
2 

Multiplying ith row of matrix C and D in equation (5) by λi for i =1 …n and forming their sum gives 

 

∑𝜆𝑖

𝑛

𝑖=1

∑𝜆𝑗𝐶𝑜𝑣 (𝑧(𝑥𝑖), 𝑧(𝑥𝑗)) +

𝑛

𝑗=1

∑𝜆𝑖

𝑛

𝑖=1

𝛽 = ∑𝜆𝑖𝐶𝑜𝑣(𝑧(𝑥𝑖), 𝑧0)

𝑛

𝑖=1

 

 

 

From equation (4) the kriging variance is then given by 

 

𝜎𝑒
2 = 𝜎2 + ∑ ∑𝜆𝑘

𝑛

𝑗=1

𝑛

𝑘=1

𝜆𝑗𝐶𝑜𝑣 (𝑧(𝑥𝑘), 𝑧(𝑥𝑗)) −  2(∑ 𝜆𝑘𝐶𝑜𝑣(𝑧(𝑥𝑘)

𝑛

𝑘=1

, 𝑧0))                                        

= 𝜎2 + (∑𝜆𝑖𝐶𝑜𝑣(𝑧(𝑥𝑖), 𝑧0)

𝑛

𝑖=1

− 𝛽)

−  2(∑ 𝜆𝑘𝐶𝑜𝑣(𝑧(𝑥𝑘)

𝑛

𝑘=1

, 𝑧0))                                                 

 

= 𝜎2--  𝛌𝑻D                                                                                                                 
(9) 

 

where λT denotes the transpose of vector λ from equation (6). 

 

 

2.4 Kriging variance 𝜎𝑒
2in terms of the variogram 

The kriging variance 𝜎𝑒
2 can similarly be expressed in terms of the variogram by replacing 

covariance terms in vector D of equation (8)  

 

𝑫 = [

𝐶𝑜𝑣(𝑧(𝑥1), 𝑧0)
⋮

𝐶𝑜𝑣(𝑧(𝑥𝑛), 𝑧0)
1

]= [

𝜎2 − 𝛾10

⋮
𝜎2 − 𝛾𝑛0

1

]                                                            

so that from equation (9) 

𝜎𝑒
2 = 𝜎2 −  𝛌𝑻𝑫                                                                                                                                                                                                                                                                                                                                                                      

= 𝜎2 − [𝜆1 … 𝜆𝑛 𝛽 ] [

𝜎2 − 𝛾10

⋮
𝜎2 − 𝛾𝑛0

1

]                                                                                    

= 𝜎2 − 𝜎2 ∑𝜆𝑖

𝑛

𝑖=1

− ∑𝜆𝑖𝛾𝑖0

𝑛

𝑖=1

+ 𝛽                          

= ∑𝜆𝑖𝛾𝑖0 − 𝛽                                                                                                                   

𝑛

𝑖=1

 

  



Supplementary Table 
List of mutations found in 940 samples 

Mutation 
Number of samples 
with mutation 

Number of States/Regions 
where mutation was found 

Notes and references 

Unique to this survey 

N371I 1 1  

P443S 4 2  

N458I 9 1  

S485N 1 1  

N490T 1 1  

P527H 1 1  

G533A 3 2  

A675V 5 2  

A676D 6 3  

 

Previously reported in Myanmar or Myanmar-Thailand border 5, 18, 36 

E252Q 17 3  

K438N 1 1  

P441L 8 2  

F446I 80 6  

G449A 5 4 Also reported in Cambodia4 

D452E 1 1  

N458Y 2 1 Also reported in Cambodia4, 5 

C469F 1 1  

M476I 18 2  

K479I 8 1  

A481V 1 1 Also reported in Cambodia4 

N537I 15 2 Also reported in Cambodia4 

G538V 30 3  

R561H 25 5 Also reported in Cambodia4 

P574L 41 7 Also reported in Cambodia4 

R575K 6 2  

C580Y 97 2 Also reported in Cambodia4, 5 

F614L 1 1  

 

Previously reported in Cambodia only5 

H719N 2 1  

 

Previously reported in Africa only5 

R255K 2 2  

 

  



Supplementary Figure 1 

Variogram produced by the kriging approach. An empirical variogram was constructed as a scatter 
plot (squares) of semivariance γ(h) versus lag distance h to describe spatial dependence in the 
data collected. The plot describes how variation in estimated K13 mutation prevalence observed 
between different sample sites is dependent on (Euclidean) separation distance between those 
sites. The plot was constructed by binning all pairwise site distances into a default 20 bins, each at 
a fixed increment apart. Spatial dependence can be seen to decrease as the distance between the 
sample data sites is increased. Such a plot will typically achieve a plateau (referred to as a 'sill') 
after a certain separation distance (referred to as the 'range') exhibited by a ‘flattening of the curve’ 
as is illustrated in the plot after a lag distance of approximately 4 separation units (20 km).  

 

 


